Statistical integration of temporal filter banks for robust speech recognition using linear discriminant analysis (LDA)
نویسندگان
چکیده
This paper presents a study on statistical integration of temporal filter banks for robust speech recognition using linear discriminant analysis (LDA). The temporal properties of stationary features were first captured and represented using a bank of well-defined temporal filters. Then these derived temporal features can be integrated and compressed using the LDA technique. Experimental results show that the recognition performance can be significantly improved both in clean and in noisy environments.
منابع مشابه
Robust speech recognition using data-driven temporal filters based on independent component analysis
In this paper, a data-driven temporal processing method based on Independent Component Analysis (ICA) is proposed for obtaining a more robust speech representation. Two different schemes of dominant temporal filters based on ICA are investigated. The one is the perceptuallybased filter which always focuses on the modulation frequency range between 1 and 16 Hz and the other is the most independe...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملRobust speech/non-speech detection using LDA applied to MFCC for continuous speech recognition
Continuous speech recognition applications need precise detection because the number of words to recognize is unknown and vocabulary words can be short. The speech/non-speech detection must be robust to the boundary precision. In this work, a new approach to evaluate detection algorithm for continuous speech recognition is presented. The speech/non-speech detection using energy parameter combin...
متن کاملRobust speech/non-speech detection using LDA applied to MFCC
In speech recognition, a speech/non-speech detection must be robust to noise. In this work, a new method for speech/nonspeech detection using a Linear Discriminant Analysis (LDA) applied to Mel Frequency Cepstrum Coefficients (MFCC) is presented. The energy is the most discriminant parameter between noise and speech. But with this single parameter, the speech/non-speech detection system detects...
متن کاملThe Development and Integration of the LDA-Toolkit Into COST249 SpeechDat(II) SIG Reference Recognizer
This paper presents the development of Linear Discriminant Analysis toolkit (LDA-Toolkit) and its integration into widely used COST249 SpeechDat(II) Task Force Reference Recognizer (RefRec). The crucial parts of the LDA, the determination of LDA classes, as well as the influence of the level of dimensionality reduction on automatic speech recognition performance, are discussed. Evaluation of pr...
متن کامل